Identification of stathmin as a novel marker of cell proliferation in the recovery phase of acute ischemic renal failure.

نویسندگان

  • Kamyar Zahedi
  • Zhaohui Wang
  • Sharon Barone
  • Kathy Tehrani
  • Naoko Yokota
  • Snezana Petrovic
  • Hamid Rabb
  • Manoocher Soleimani
چکیده

Ischemic renal injury can be classified into the initiation and extension phase followed by the recovery phase. The recovery phase is characterized by increased dedifferentiated and mitotic cells in the damaged tubules. Suppression subtractive hybridization was performed by using RNA from normal and ischemic kidneys to identify the genes involved in the physiological response to ischemia-reperfusion injury (IRI). The expression of stathmin mRNA increased by fourfold at 24 h of reperfusion. The stathmin mRNA did not increase in sodium-depleted animals or in animals with active, persistent injury secondary to cis-platinum. Immunofluorescent labeling demonstrated that the expression of stathmin increased dramatically at 48 h of reperfusion. Labeling with antibodies to stathmin and proliferating cell nuclear antigen (PCNA) indicates that the expression of stathmin was induced before the upregulation of PCNA and that all PCNA-positive cells expressed stathmin. Double immunofluorescent labeling demonstrated the colocalization of stathmin with vimentin, a marker of dedifferentiated cells. Stathmin expression was also significantly enhanced in acute tubular necrosis in humans. On the basis of its induction profile in IRI, the data indicating its enhanced expression in proliferating cells and regenerating organs, we propose that stathmin is a marker of dedifferentiated, mitotically active epithelial cells that may contribute to tubular regeneration and could prove useful in distinguishing the injury phase from recovery phase in IRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stathmin-deficient mice develop fibrosis and show delayed recovery from ischemic-reperfusion injury.

In kidneys subjected to ischemic reperfusion injury (IRI) stathmin, a tubulin-binding protein involved in the regulation of mitosis, is expressed in dedifferentiated and proliferating renal tubule cells during the recovery phase. To ascertain the role of stathmin in the recovery from ischemic kidney injury, stathmin-deficient (OP18-/-) and wild-type (WT) animals were subjected to experimental I...

متن کامل

O10: Thrombo-Inflammation in Acute Ischemic Stroke

Ischemic stroke has been classified as a merely thrombotic disease, so the main goal of its treatment is the recanalization of the occluded vasculature. However, despite fast restoration of blood circulation, progressive stroke still develops in many patients, which has led to the concept of reperfusion injury.  The underlying mechanism is only partly known. Though, it is accepted now, tha...

متن کامل

In vivo effects of allogeneic mesenchymal stem cells in a rat model of acute ischemic kidney injury

Objective(s): Renal ischemia-reperfusion injury (IRI) as a severe condition of acute kidney injury (AKI) is the most common clinical problem with high mortality rates of 35-60% deaths in hospital. Mesenchymal stem cells (MSC) due to unique regenerative characteristics are ideal candidates for the treatment of the ischemic injuries. This work is focused on the administration of MSC to IRI-induce...

متن کامل

Effect of Endothelin-A Receptor Blockade on the Early Phase of Ischemia/Reperfusion-Induced Acute Renal Failure in Anesthetized Rats

Background: Previous studies have shown increases in endothelin (ET) concentration of plasma and renal tissues in acute renal failure (ARF).  ET has a potent vasoconstrictor effect, through binding with its ETA receptors, and may play some roles in renal hemodynamic dysfunction in ARF.Objective: To examine the beneficial effect of a selective ETA-receptor antagonist on renal dysfunction and tis...

متن کامل

The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat

Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 286 5  شماره 

صفحات  -

تاریخ انتشار 2004